2024年
[1] Dai Min, Zhou Hao*, Ma Wenjing, et al. Tracking shallow and deep groundwater storage changes in North China Plain with improved fusion method and hybrid spectral analysis approach[J]. Journal of Hydrology, 2024, 633: 131001. doi: 10.1016/j.jhydrol.2024.131001.
[2] Ma Wenjing, Zhou Hao*, Dai Min, et al. Characterizing the drought events in Yangtze River basin via the insight view of its sub-basins water storage variations[J]. Journal of Hydrology, 2024, 633: 130995. doi: 10.1016/j.jhydrol.2024.130995.
[3] 周浩*, 李耀宗, 周泽兵, 等. 星载加速度计频域噪声对时变重力场反演的影响研究[J]. 地球物理学报, 2024, 67(5): 1733-1745.
[4] Guo Xiang, Lian Yidu, Sun Yu, Zhou Hao*, and Luo Zhicai. 2024. Assessment of the Added Value of the GOCE GPS Data on the GRACE Monthly Gravity Field Solutions[J]. Remote Sensing, 16, 9: 1586. doi: 10.3390/rs16091586.
[5] Tang Lu, Zhou Hao*, Li Jin, Wang Penghui, Su Xiaoli, Luo Zhicai. 2024. Effect of Argo Salinity Drift since 2016 on the Estimation of Regional Steric Sea Level Change Rates[J]. Remote Sensing, 16, 11: 1855. doi: 10.3390/rs16111855.
[6] Zhou Hao*, Zheng Lijun, Li Yaozong, Guo Xiang, Zhou Zebing, Luo Zhicai. 2024. HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years satellite geodesy data and a hybrid processing chain[J]. Earth System Science Data, doi: 10.5194/essd-2024-39.
[7] 郑李均,周浩*,李耀宗,夏明阳,郑舒允,罗志才. 2024. 海潮模型误差对GRACE-FO卫星激光观测数据反演时变重力场的影响分析[J]. 地球物理学报, 已接收.
[8] Zhang Weihang, Yang Fan*, Wu Yi, et al. HUST-CRA: A new Atmospheric De-aliasing Model for Satellite Gravimetry. Advances in Atmospheric Sciences, 2024.
[9] Yang Fan, Liu Shuhao*. Forootan Ehsan. A spatial-varying non-isotropic Gaussian-based convolution filter for smoothing GRACE-like temporal gravity fields[J]. Journal of Geodesy 2024, 98: 66.
2023年
[1] He Q, Fok H, Ferreira V, et al. Three-dimensional Budyko framework incorporating terrestrial water storage: Unraveling water-energy dynamics, vegetation, and ocean-atmosphere interactions[J]. Science of The Total Environment, 2023, 904: 166380. doi: 10.1016/j.scitotenv.2023.166380.
[2] Zhou H, Zheng L, Pail R, et al. The impacts of reducing atmospheric and oceanic de-aliasing model error on temporal gravity field model determination[J]. Geophysical Journal International, 2023, 234(1): 210–227. doi: 10.1093/gji/ggad064.
[3] Wang H, Currie CA. Stepwise Widening of the Central Andes—The Role of the Lower Crust[J]. Geophysical Research Letters, 2023, 50(12): e2023GL103969. doi: 10.1029/2023GL103969.
[4] Wu Y, Li Y, Jia D, et al. Seamless Seafloor Topography Determination from Shallow to Deep Waters Over Island Areas Using Airborne Gravimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–19. doi: 10.1109/TGRS.2023.3336747.
[5] Zhou H, Tang L, Tan D, et al. Impacts of frequency-dependent instrument noise for next-generation gravimetric mission on determining temporal gravity field model[J]. Journal of Geodesy, 2023, 97(3): 23. doi: 10.1007/s00190-023-01716-2.
[6] Zhou H, Dai M, Wei M, et al. Quantitative Assessment of Shallow Groundwater Sustainability in North China Plain[J]. Remote Sensing, 2023, 15(2): 474. doi: 10.3390/rs15020474.
[7] Sun Y, Li Y, Guo X, et al. Estimating C30 coefficients for GRACE/GRACE-FO time-variable gravity field models using the GRACE-OBP approach[J]. Journal of Geodesy, 2023, 97(3): 20. doi: 10.1007/s00190-023-01707-3.
[8] Zhou H, Wang P, Pail R, et al. Assessment of a near-polar pair mission for detecting the Earth’s temporal gravity field[J]. Geophysical Journal International, 2023, 234(2): 852–869. doi: 10.1093/gji/ggad107.
[9] Lu B, Luo Z, Zhong B, et al. A parallel numerical algorithm by combining MPI and OpenMP programming models with applications in gravity field recovery[J]. Frontiers in Earth Science, 2023, 11: 1080879. doi: 10.3389/feart.2023.1080879.
[10] Zhou H, Wang P, Tang L, et al. A New GRACE Filtering Approach Based on Iterative Image Convolution[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(9): e2023JB026553. doi: 10.1029/2023JB026553.
[11] 刘书豪, 杨帆, 吴毅, 等. GRACE研究海洋质量变化的不确定度分析[J]. 华中科技大学学报(自然科学版), 2023, 51(03): 141–148.
[12] 郭向. GPS相位模糊度固定对钟差解算的影响研究[J]. 华中科技大学学报(自然科学版), 2023, 51(03): 108–113.
[13] 党亚民, 蒋涛, 杨元喜, 等. 中国大地测量研究进展(2019—2023)[J]. 测绘学报, 2023, 52(09): 1419–1436.
[14] 王康, 李耀宗, 肖云, 等. 加速度计移植误差来源及对重力场建模影响分析[J]. 华中科技大学学报(自然科学版), 2023, 51(3): 72–77.
[15] 尚佩斯, 苏晓莉, 罗志才. 格陵兰冰盖2002—2021年质量快速亏损及变化减缓分析[J]. 华中科技大学学报(自然科学版), 2023, 51(3): 100–107.
[16] 马文静, 周浩*, 何培培, 等. HUST-Grace2020模型反演中国大陆区域水储量变化特征分析[J]. 测绘学报, 2023, 52(12): 2089–2102.
2022年
[1] Wei M, Zhou H*, Luo Z, et al. Tracking inter-annual terrestrial water storage variations over Lake Baikal basin from GRACE and GRACE Follow-On missions[J]. Journal of Hydrology: Regional Studies, 2022, 40: 101004. doi: 10.1016/j.ejrh.2022.101004.
[2] Yang F, Luo Z, Zhou H, et al. On study of the Earth topography correction for the GRACE surface mass estimation[J]. Journal of Geodesy, 2022, 96(12): 95. doi: 10.1007/s00190-022-01683-0.
[3] Wu Y, Wang J, Abulaitijiang A, et al. Local Enhancement of Marine Gravity Field over the Spratly Islands by Combining Satellite SAR Altimeter-Derived Gravity Data[J]. Remote Sensing, 2022, 14(3): 474. doi: 10.3390/rs14030474.
[4] Wang H, Huang Z, Wen Z, et al. Lake Water Storage Changes in Northeast Hoh Xil Observed by Cryosat-2 and Landsat-5/7/8: Impact of the Outburst of Zhuonai Lake in 2011[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1–5. doi: 10.1109/LGRS.2022.3164735.
[5] Liu L, Jiang L, Wang H, et al. Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012[J]. Remote Sensing, 2022, 14(13): 2962. doi: 10.3390/rs14132962.
[6] Guo X, Zhang Y, Zhou H, et al. Enhanced orbit determination for formation-flying satellites based on M-estimation[J]. Advances in Space Research, 2022, 70(4): 923–934. doi: 10.1016/j.asr.2022.05.043.
[7] Wu Y, Huang J, He X, et al. Coastal Mean Dynamic Topography Recovery Based on Multivariate Objective Analysis by Combining Data from Synthetic Aperture Radar Altimeter[J]. Remote Sensing, 2022, 14(1): 240. doi: 10.3390/rs14010240.
[8] Shang P, Su X, Luo Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry[J]. Remote Sensing, 2022, 14(18): 4442. doi: 10.3390/rs14184442.
[9] Zhou H, Dai M, Wang P, et al. Assessment of GRACE/GRACE Follow-On Terrestrial Water Storage Estimates Using an Improved Forward Modeling Method: A Case Study in Africa[J]. Frontiers in Earth Science, 2022, 9: 796723. doi: 10.3389/feart.2021.796723.
[10] Yao C, Shum CK, Luo Z, et al. An optimized hydrological drought index integrating GNSS displacement and satellite gravimetry data[J]. Journal of Hydrology, 2022, 614: 128647. doi: 10.1016/j.jhydrol.2022.128647.
[11] Liu H, Luo Z, Hu Z, et al. A review of high-performance MEMS sensors for resource exploration and geophysical applications[J]. Petroleum Science, 2022, 19(6): 2631–2648. doi: 10.1016/j.petsci.2022.06.005.
[12] Djessou R, Wan X, Yi S, et al. Water Storage Variation and Its Possible Causes Detected by GRACE in the Volta River Basin. Remote Sensing, 2022, 14: 5319. doi: 10.3390/rs14215319.
[13] 罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1713–1727.
[14] 周浩, 罗志才, 周泽兵, 等. 利用卫星跟踪卫星观测数据确定时变重力场球谐解的发展趋势[J]. 地球与行星物理论评, 2022, 53(3): 243–256.
[15] 周浩, 罗志才, 周泽兵, 等. 基于天琴一号观测数据反演地球重力场模型[J]. 华中科技大学学报(自然科学版), 2022, 50(09): 117–125.
2021年
[1] Zhou H, Luo Z, Zhou Z, et al. What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?[J]. Surveys in Geophysics, 2021, 42(3): 699–726. doi: 10.1007/s10712-021-09641-9.
[2] Cui L, Zhang C, Luo Z, et al. Using the Local Drought Data and GRACE/GRACE-FO Data to Characterize the Drought Events in Mainland China from 2002 to 2020[J]. Applied Sciences, 2021, 11(20): 9594. doi: 10.3390/app11209594.
[3] Cai L, Wan X, Hsu H, et al. The earth’s gravity field recovery using the third invariant of the gravity gradient tensor from GOCE[J]. Scientific Reports, 2021, 11(1): 3581. doi: 10.1038/s41598-021-81840-1.
[4] Xia X, Li Z, Bao F, et al. Sedimentary structure of the Sichuan Basin derived from seismic ambient noise tomography[J]. Geophysical Journal International, 2021, 225(1): 54–67. doi: 10.1093/gji/ggaa578.
[5] Li C, Jiang L, Liu L, et al. Regional and altitude-dependent estimate of the SRTM C/X-band radar penetration difference on High Mountain Asia glaciers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4244–4253. doi: 10.1109/JSTARS.2021.3070362.
[6] Wu Y, Abulaitijiang A, Andersen O, et al. Refinement of Mean Dynamic Topography Over Island Areas Using Airborne Gravimetry and Satellite Altimetry Data in the Northwestern South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021805. doi: 10.1029/2021JB021805.
[7] Zhang C, Shum C, Bezděk A, et al. Rapid mass loss in West Antarctica revealed by Swarm gravimetry in the absence of GRACE[J]. Geophysical Research Letters, 2021, 48(23): e2021GL095141. doi: 10.1029/2021GL095141.
[8] Sun R. New algorithms for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids[J]. Journal of Geodesy, 2021, 95(5): 47. doi: 10.1007/s00190-021-01495-8.
[9] Ni S, Luo Z, Chen J, et al. Impact of Large-Scale Ocean–Atmosphere Interactions on Interannual Water Storage Changes in the Tropics and Subtropics[J]. Remote Sensing, 2021, 13(17): 3529. doi: 10.3390/rs13173529.
[10] Sun Y, Liu L, Pei Y, et al. Geometric Evolution of the Chongce Glacier during 1970–2020, Detected by Multi-Source Satellite Observations[J]. Remote Sensing, 2021, 13(18): 3759. doi: 10.3390/rs13183759.
[11] Chen H, Li Z, Luo Z, et al. Crust and Upper Mantle Structure of the South China Sea and Adjacent Areas From the Joint Inversion of Ambient Noise and Earthquake Surface Wave Dispersions[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(3): e2020GC009356. doi: 10.1029/2020GC009356.
[12] Wang H, Currie C, DeCelles P. Coupling Between Lithosphere Removal and Mantle Flow in the Central Andes[J]. Geophysical Research Letters, 2021, 48(16): e2021GL095075. doi: 10.1029/2021GL095075.
[13] Yang J, Guo J, Greenbaum J, et al. Bathymetry Beneath the Amery Ice Shelf, East Antarctica, Revealed by Airborne Gravity[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096215. doi: 10.1029/2021GL096215.
[14] Yang F, Liang L, Wang C, et al. Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data[J]. Remote Sensing, 2021, 14(1): 126. doi: 10.3390/rs14010126.
[15] Cui L, Zhang C, Yao C, et al. Analysis of the Influencing Factors of Drought Events Based on GRACE Data under Different Climatic Conditions: A Case Study in Mainland China[J]. Water, 2021, 13(18): 2575. doi: 10.3390/w13182575.
[16] Wu Y, He X, Luo Z, et al. An Assessment of Recently Released High-Degree Global Geopotential Models Based on Heterogeneous Geodetic and Ocean Data[J]. Frontiers in Earth Science, 2021, 9: 749611. doi: 10.3389/feart.2021.749611.
[17] Yang F, Forootan E, Wang C, et al. A New 1‐Hourly ERA5‐Based Atmosphere De‐Aliasing Product for GRACE, GRACE‐FO, and Future Gravity Missions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB021926. doi: 10.1029/2021JB021926.
[18] Zhang C, Shum C, Bezdek A, et al. Rapid Mass Loss in West Antarctica Revealed by Swarm Gravimetry in the Absence of GRACE[J]. Geophysical Research Letters, 2021, 48: e2021GL095141. doi:10.1029/2021GL095141.
[19] 杨军军. 利用重力梯度估计海底地形[J]. 测绘学报, 2021, 50(5): 708.
[20] 陆飚, 钟波, 罗志才. 波罗的海高精度海洋重力测量数据处理与分析.[J]. 武汉大学学报 (信息科学版), 2021, 46(8).
2020年
[1] Zhou H, Zhou Z, Luo Z, et al. What can be expected from GNSS tracking of satellite constellations for temporal gravity field model determination?[J]. Geophysical Journal International, 2020, 222(1): 661–677. doi: 10.1093/gji/ggaa177.
[2] Lu B, Förste C, Barthelmes F, et al. Using real polar ground gravimetry data to solve the GOCE polar gap problem in satellite-only gravity field recovery[J]. Journal of Geodesy, 2020, 94(3): 34. doi: 10.1007/s00190-020-01361-z.
[3] Luo J, Bai Y, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a.
[4] Zhong B, Li X, Chen J, et al. Surface Mass Variations from GPS and GRACE/GFO: A Case Study in Southwest China[J]. Remote Sensing, 2020, 12(11): 1835. doi: 10.3390/rs12111835.
[5] Fan D, Li S, Li X, et al. Seafloor topography estimation from gravity anomaly and vertical gravity gradient using nonlinear iterative least square method[J]. Remote Sensing, 2020, 13(1): 64. doi: 10.3390/rs13010064.
[6] Liu L, Jiang L, Zhang Z, et al. Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Plateau, Estimated from ZiYuan-3 and TanDEM-X Measurements[J]. Remote Sensing, 2020, 12(3): 472. doi: 10.3390/rs12030472.
[7] Yang J, Luo Z, Tu L, et al. On the Feasibility of Seafloor Topography Estimation from Airborne Gravity Gradients: Performance Analysis Using Real Data[J]. Remote Sensing, 2020, 12(24): 4092. doi: 10.3390/rs12244092.
[8] Yang J, Luo Z, Tu L. Ocean Access to Zachariæ Isstrøm Glacier, Northeast Greenland, Revealed by OMG Airborne Gravity[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB020281. doi: 10.1029/2020JB020281.
[9] Sun S, Du J, Chen C, et al. Nonlinear equivalent source method for transformation and inversion of total-field magnetic anomaly[J]. Chinese Journal of Geophysics, 2020, 63(1): 351–361. Doi: 10.6038/cjg2020M0325.
[10] Su X, Guo J, Shum C, et al. Increased Low Degree Spherical Harmonic Influences on Polar Ice Sheet Mass Change Derived from GRACE Mission[J]. Remote Sensing, 2020, 12(24): 4178. doi: 10.3390/rs12244178.
[11] Zhong B, Li Q, Chen J, et al. Improved Estimation of Regional Surface Mass Variations from GRACE Intersatellite Geopotential Differences Using a Priori Constraints[J]. Remote Sensing, 2020, 12(16): 2553. doi: 10.3390/rs12162553.
[12] Liu L, Jiang L, Wang H, et al. Estimation of glacier mass loss and its contribution to river runoff in the source region of the Yangtze River during 2000–2018[J]. Journal of Hydrology, 2020, 589: 125207. doi: 10.1016/j.jhydrol.2020.125207.
[13] Wang H, Gurnis M, Skogseid J. Continent-wide drainage reorganization in North America driven by mantle flow[J]. Earth and Planetary Science Letters, 2020, 530: 115910. doi: 10.1016/j.epsl.2019.115910.
[14] Cui L, Song Z, Luo Z, et al. Comparison of Terrestrial Water Storage Changes Derived from GRACE/GRACE-FO and Swarm: A Case Study in the Amazon River Basin[J]. Water, 2020, 12(11): 3128. doi: 10.3390/w12113128.
[15] Xu Y, Li J, Wang J, et al. Assessing water storage changes of Lake Poyang from multi-mission satellite data and hydrological models[J]. Journal of Hydrology, 2020, 590: 125229. doi: 10.1016/j.jhydrol.2020.125229.
[16] Fan D, Li S, Meng S, et al. Applying Iterative Method to Solving High-Order Terms of Seafloor Topography[J]. Marine Geodesy, 2020, 43(1): 63–85. doi: 10.1080/01490419.2019.1670298.
[17] 范雕, 李姗姗, 杨军军, 等. 利用多元回归分析反演西南印度洋区域海底地形[J]. 测绘学报, 2020, 49(2): 147.
[18] 孙石达, 杜劲松, 陈超, 等. 基于等效源的总强度磁异常非线性处理方法[J]. 地球物理学报, 2020, 63(1): 351–361.
2019年
1. Zhou, H., Zhou, Z., & Luo, Z. (2019). A new hybrid processing strategy to improve temporal gravity field solution. Journal of Geophysical Research: Solid Earth, 124, 9415–9432.https://doi.org/10.1029/2019JB017752
2. Liu, L., Jiang, L., Jiang, H., Wang, H., Ma, N., Xu, H. (2019). Accelerated glacier mass loss (2011-2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sensing of Environment, 231, 111241.https://doi.org/10.1016/j.rse.2019.111241
3. D. S. MacMillan, A. Fey, J. M. Gipson, D. Gordon, C. S. Jacobs, H. Krásná, S. B. Lambert, Z. Malkin, O. Titov, G. Wang and M. H. Xu. (2019). Galactocentric acceleration in VLBI analysis: Findings of IVS WG8.Astronomy and Astrophysics, 630, A93.https://doi.org/10.1051/0004-6361/201935379
4. Wan, J., Xu, C., Luo, Z., Wu, Y., Zhou, B., Yan, J. (2019). An approach to Moho topography recovery using the on-orbot GOCE gravity gradients and its applications in Tibet.Remote sensing, 11, 1567.https://doi.org/10.3390/rs11131567
5. Xu, M., Anderson, J., Heinkelmann, R., et al. (2019). Structure effects for 3417 celestial reference frame sources.the astrophysical journal supplements, 242, 1.https://doi.org/10.3847/1538-4365/ab16ea
6. 王锦清,徐明辉,熊亮,虞林峰,刘庆会,陆波,王广利(2019).嫦娥四号中继星4.2 m天线在轨指向标定.中国科学:物理学力学天文学, 49: 129501,https://doi.org/10.1360/SSPMA-2019-0063
7. 柳林,江利明,相龙伟,汪汉胜,孙亚飞,许厚泽(2019).青藏高原色林错流域区冰川消融对湖泊水量变化的影响.地球物理学报,62(5): 1603-1612.https://doi.org/10.6038/cjg2019M0273
8. 姚朝龙,李琼,罗志才,王长委,张瑞,周波阳(2019).利用广义三角帽方法评估GRACE反演中国大陆地区水储量变化的不确定性.地球物理学报, 62(3): 883-897.http://doi.org/10.6038/cjg2019L0454
9. Wang, X., Luo, Z., Zhong, B. (2019). Separation and Recovery of Geophysical Signals Based on the Kalman Filter with GRACE Gravity Data. Remote Sensing, 11(4): 393.http://doi.org/10.3390/rs11040393
10. Sun, S., Chen, C., Liu, Y. (2019). Constrained 3D inversion of magnetic data with structural orientation and borehole lithology: A case study in the Macheng iron deposit, Hebei, China.Geophysics, 84(2): B121-B133. https://doi.org/10.1190/geo2018-0257.1
11. Zhou, H., C. Xu, Z. Luo, Z. Zhou, B. Zhong, and J. Wan (2019). HUST-GOGRA2018s: A new gravity field model derived from the combination of GRACE and GOCE data.Terrestrial Atmospheric and Oceanic Sciences,30 (1): 97-109.https://doi.org/10.3319/TAO.2018.11.02.01
12. Liu, L., Jiang, L., Sun, Y., et al. (2019). Diurnal fluctuations of glacier surface velocity observed with terrestrial radar interferometry at Laohugou No.12 Glacier, western Qilian mountains, China.Journal of Glaciology, 1-10. https://doi.org/10.1017/jog.2019.1
13. A. Groh, M. Horwath, A. Horvath, R. Meister, L.S. Sorensen, V.R. Barletta, R. Forsberg, B. Wouters, P. Ditmar, J. Ran, R. Klees, X. Su, K. Shang, J. Guo, C.K. Shum, E. Schrama and A. Shepherd. (2019). Evaluating GRACE mass change time series for the Antarctic and Greenland Ice Sheet - Methods and results. Geosciences, 9, 415.https://doi.org/10.3390/geosciences9100415
14. Chao, N., Chen, G., Luo, Z., Su, X., Wang, Z., Li, F. (2019). Detecting Water Diversion Fingerprints in the Danjiangkou Reservoir from Satellite Gravimetry and Altimetry Data. Sensors, 19, 1510.https://doi.org/10.3390/s19163510
15. Huang, B., Liu, J., Sun, W., Yang, F. (2019). A Robust Indoor Positioning Method based on Bluetooth Low Energy with Separate Channel Information. Sensors 2019, 19, 3487.https://doi.org/10.3390/s19163487
16. Yang, F., Xiong, J., Liu, J., Wang, C., Li, Z., Tong, P., Chen, R. (2019). A Pairwise SSD Fingerprinting Method of Smartphone Indoor Localization for Enhanced Usability. Remote Sens., 11, 566
17. Wang, H., Gurnis, M., Skogseid, J. (2019). Continent-wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, Volume 530, 115910, ISSN 0012-821X. https://doi.org/10.1016/j.epsl.2019.115910.
18. Lu, B., Barthelmes, F., Li, M., Förste, C., Ince, E.S., Petrovic, S., Flechtner, F., Schwabe, J., Luo, Z., Zhong, B., He, K. (2019). Shipborne gravimetry in the Baltic Sea: data processing strategies, crucial findings and preliminary geoid determination tests. Journal of Geodesy, 93:1059–1071.https://doi.org/10.1007/s00190-018-01225-7
19. 姚朝龙,罗志才,胡月明,王长委,张瑞,李金明(2019).利用GPS垂向位移监测西南地区干旱事件.测绘学报,48(5):547-554. DOI:10.11947/j.AGCS.2019.20180308
20. Roland Pail, Hsien-Chi Yeh, Wei Feng, Markus Hauk, Anna Purkhauser, Changqing Wang, Min Zhong, Yunzhong Shen, Qiujie Chen, Zhicai Luo, Hao Zhou, Bingshi Liu, Yongqi Zhao, Xiancai Zou, Xinyu Xu, Bo Zhong, Roger Haagmans,Houze Xu (2019). Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sensing, 11 (22), 2654.https://doi.org/10.3390/rs11222654
2018年
1. Xu, C., Wang, H., Luo, Z., Liu, H., Liu, X. (2018). Insight into urban faults by wavelet multi-scale analysis and modeling of gravity data in Shenzhen, China.Journal of Earth Science, 29 (6): 1340-1348.https://doi.org/10.1007/s12583-017-0770-4
2. Wu, Y., Luo, Z., Zhong, B., Xu, C (2018). A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0.Geoscientific Model Development, 11:4797-4815.https://doi.org/10.5194/gmd-11-4797-2018
3. Zhou, H., Luo, Z., Zhou, Z., Li, Q., Zhong, B., Hsu, H. (2018). Impacts of different kinematic empirical parameters processing strategies on temporal gravity field model determination.Journal of Geophysical Research: Solid Earth, 123. http://doi.org/10.1029/2018JB015556
4. Chao, N., Luo, Z., Wang, Z., Jin, T. (2018). Retrieving Groundwater depletion and drought in the Tigris-Euphrates Basin between 2003 and 2015.Groundwater, 56(5): 770-782.http://doi.org/10.1111/gwat.12611
5. Yu, Y., Chao, B.F., Garcia-Garcia, D., Luo, Z. (2018). Variations of the Argentine Gyre Observed in the GRACE Time‐Variable Gravity and Ocean Altimetry Measurements.Journal of Geophysical Research: Ocean, 123:5375-5387. https://doi.org/10.1029/2018JC014189
6. Yang, J., Jekeli, C., Liu, L. (2018). Seafloor Topography Estimation From Gravity Gradients Using Simulated Annealing.Journal of Geophysical Research: Solid Earth, 123:6958-6975.http://doi.org/10.1029/2018JB015883
7. Li, Q., Luo, Z., Zhong, B., Zhou, H. (2018). An improved approach for evapotranspiration estimation using water balance equation: case study of Yangtze River Basin.Water, 10, 812.http://doi.org/10.3390/w10060812
8. Zhang, Z., Jiang, L., Liu, L., Sun, Y., Wang, H. (2018). Annual Glacier-Wide Mass Balance (2000–2016) of the Interior Tibetan Plateau Reconstructed from MODIS Albedo Products.Remote Sensing, 10, 1031.http://doi.org/10.3390/rs10071031
9. Wu, Y., Zhong, B., Luo, Z. (2018). Investigation of the Tikhonov regularization method in regional gravity field modeling by Poisson wavelets radial basis functions.Journal of Earth Science, 29(06): 1349-1358.https://doi.org/10.1007/s12583-017-0771-3
10. Zhou, H., Luo, Z., Tangdamrongsub, N., et al. (2018). Identifying flood events over the Poyang Lake Basin using multiple satellite remote sensing observations.Remote Sensing, 10, 713.http://doi.org/10.3390/rs10050713
11. Lu, B., Luo, Z., Zhong, B., Zhou, H., et al. (2018). The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor.Journal of Geodesy, 92: 561-572.http://doi.org/10.1007/s00190-017-1089-8
12. Su, X., Shum, C.K., Luo, Z. (2018). Evaluating IMERG V04 Final Run for Monitoring Three Heavy Rain Events Over Mainland China in 2016.IEEE GEOSCIENCE ADN REMOTE SENSING LETTERS, 15(3): 444-448.http://dx.doi.org/10.1109/LGRS.2018.2793897
13. Su, X., Luo, Z., Zhou, Z. (2018). Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry.Journal of Geodynamics, 117: 41-48.https://doi.org/10.1016/j.jog.2018.03.007.
14. Xu, C., Luo, Z., Sun, R., Zhou, H., Wu, Y. (2018). Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau.Geophysical Journal International, 213: 2085-2095. http://doi.org/10.1093/gji/ggy110
15. Su, X., Shum, C.K., Guo, J., Howat, I.M., Kuo, C., Jezek, K.C., Duan, J., Y Yi, Y. (2018). High-Resolution Interannual Mass Anomalies of the Antarctic Ice Sheet by Combining GRAEC Gravimetry and ENVISAT Altimetry.IEEE TRANACTIONS ON GEOSCIENCE AND REMOTE SENSING, 56(1): 539-546. http://dx.doi.org/10.1109/TGRS.2017.2751070
16. 宛家宽,罗志才,赵珞成(2018).利用FG5绝对重力仪观测数据确定重力垂直梯度.地球物理学报,61 (1):119-126.http://doi.org/10.6038/cjg2018K0595
17. Lijie He, Lunche Wang, Aiwen Lin, Ming Zhang, Xiangao xia, Minghui Tao, Hao Zhou. (2018). What drives changes in aerosol properties over the Yangtze River Basin in past four decades? Atmospheric Environment, ISSN: 1352-2310, 190:269-283.https://doi.org/10.1016/j.atmosenv.2018.07.034
18. Yang, F., Ehsan Forootan, Shum, C.K., Zhong, Min. (2018). Evaluating non-tidal atmospheric products by measuring GRACE K-band rang rate residuals. Geophys. J. Int, 215, 1134-1147.10.1093/gji/ggy340
19. LIU Jingbin, HUANG Baichuan, ZHANG Bin, LI Leilei, YANG Fan (2018). AOA Estimation Based on Channel State Information Extracted from WiFi with Double Antenna. GEOMATICS AND INFORMATION SCIENCE OF WUHAN UNIVERS, 2018, 43(12): 2167-2172.
20. Li Zheng, Liu Jingbin, Yang Fan, Niu Xiaoguang, Li Leilei, Wang Zemin, Chen Ruizhi (2018). A Bayesian Density Model-Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability. Sensors.10.3390/s18114063
2017年
1. Wu, Y., Luo, Z., Chen, W., Chen, Y. (2017). High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques.Earth Planet Space, 69: 34.https://doi.org/10.1186/s40623-017-0618-2
2. Lu, B., Barthelmes, F., Petrovic, S., Foerste, C., Flechtner, F., Luo, Z., et al. (2017). Airborne gravimetry of GEOHALO mission: data processing and gravity field modeling: Airborne gravimetry of GEOHALO mission.Journal of Geophysical Research: Solid Earth, 122(12).http://doi.org/10.1002/2017JB014425
3. Huang, Z., Wang, H., Luo, Z. (2017). Improving Jason-2 sea surface heights within 10 km offshore by retracking decontaminated waveforms.Remote Sensing, 9(10): 1077.http://doi.org/10.3390/rs9101077
4. Zhou, H., Luo, Z., Tangdamrongsub, N., et al. (2017). Characterizing drought and flood events over the Yangtze River Basin using the HUST-Grace2016 solution and ancillary data.Remote Sensing, 9(11): 1100. http://doi.org/10.3390/rs9111100
5. Chao, N., Wang, Z. (2017). Characterized flood potential in the Yangtze River basin from GRACE gravity observation, hydrological model and in-situ hydrological station.Journal of Hydrologic Engineering, 22(9).https://doi.org/10.1061/(ASCE)HE.1943-5584.0001547
6. Zhou, H., Luo, Z., Zhou, Z., Zhong, B., Hsu, H. (2017). HUST-Grace2016s: a new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period.Advances in Space Research, 60(3): 597-611. https://doi.org/10.1016/j.asr.2017.04.026
7. Wu, Y., Zhou, H., Zhong, B., Luo, Z. (2017). Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data.Journal of Geophysical Research: Solid Earth, 122(8), 6928-6952. https://doi.org/10.1002/2017JB014196
8. Xu, C., Liu, Z., Luo, Z., Wu, Y., Wang, H. (2017). Moho Topography of the Tibetan Plateau Using Multi-Scale Gravity Analysis and Its Tectonic Implications.Journal of Asian Earth Science, 138: 378-386. https://doi.org/10.1016/j.jseaes.2017.02.028
9. Chao, N., Wang, Z., Hwang, C., et al. (2017). Decline of Geladandong glacier elevation in Yangtze River’s source region: detection by ICESat and assessment by hydroclimatic data.Remote sensing. 9(1): 75.https://doi.org/10.3390/rs9010075
10. Yang, F., J. Kusche, E. Forootan, and R. Rietbroek. (2017). Passive-ocean radial basis function approach to improve temporal gravity recovery from GRACE observations, J. Geophys. Res. Solid Earth, 122, 6875–6892,doi:10.1002/2016JB013633
11. Yang F, Wang C Q,Xu H Z et al. (2017). Towards a more accurate temporal gravity model from GRACE observations through the kinematic orbits. Chinese J. Geophysics, 60(1): 37-49,doi: 10.6038/cjg20170101
12. Yang F, Xu H Z,Zhong M et al. (2017). GRACE global temporal gravity recovery through the radial basis function approach. Chinese J. Geophysics, 60(4), doi:10.6038/cjg20170401
2016年
1. Wu, Y., Luo, Z., Mei, X., Lu, J. (2016). Normal Height Connection across Seas by the Geopotential-Difference method: Case Study in Qiongzhou Strait, China,Journal of Surveying Engineering, 143(2), 1-10,https://doi.org/10.1061/(ASCE)SU.1943-5428.0000203, 05016011.
2. Luo, Z., Zhou, H., Li, Q., et al. (2016). A new time-variable gravity field model recovered by dynamic integral approach on the basis of GRACE KBRR data alone. Chinese J. Geophys. (in Chinese), 59(6), 1994-2005.https://doi.org/10.6038/cjg20160606
3. Zhou, H., Luo, Z., Wu, Y., et al. (2016). Impact of geophysical model errors for recovering temporal gravity field model. Journal of Applied Geophysics, 130, 177-185.http://dx.doi.org/10.1016/j.jappgeo.2016.04.004
4. Sun, R., Shen, W. (2016). Influence of dynamical equatorial flattening and orientation of a triaxial core on prograde diurnal polar motion of the Earth. Journal of Geophysical Research; Solid Earth, ISSN: 2169-9313, 121 (10), 7570-7597.https://doi.org/10.1002/2016JB013278