English
 
通知: ·2018年11月23日-25日 第四届...    ·181102 Koch教授学术报告    ·181026 林丰利教授学术报告    ·181025 周泽兵教授学术报告    ·181019 林凯教授学术报告   
 
 


  发表论文

  研究小组
  ·2013年5月小组照片
·2014年9月小组照片
  研究方向
  科研项目
  研究成果
  ·发表论文
·获奖
·专利
  最新进展

  文章统计

  2014年 (15)
  2013年 (8)
  2012年 (11)
 

发表论文 您的位置是: 首页 > 科学研究 > 研究成果 > 发表论文 > 正文

 

2018 Evaluating IMERG V04 Final Run for Monitoring Three Heavy Rain Events Over Mainland China in 2016

发布时间:2018-11-08          来源:           浏览次数:

Xiaoli Su, C. K. Shum, Zhicai Luo

1 Institute of Geophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 China

2 School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA

Abstract: Predicting and monitoring the spatiotemporal characteristics of heavy rain events are important to hazard pre- paredness, mitigation efforts, and local water resource manage- ment. Using three data sets, namely, the daily rain product from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) version 04 Final Run, the daily output from European Centre for Medium-Range Weather Forecasts reanalysis data Interim version (ERA-Interim), and the high- quality gauge-satellite merged precipitation product, the spa- tiotemporal patterns of three heavy rain events are investigated for the first time over China in 2016, with the objective of assessing the capability of IMERG product for monitoring heavy rain events. It is found that the daily IMERG Final Run can better capture the spatial and temporal characteristics of heavy rain compared with that from ERA-Interim, but it significantly overestimates the amounts of the heaviest rainfalls by 11%–85% over the example regions. The comparison of regional averaged precipitation demonstrates that time series of precipitation retrieved by the IMERG algorithm agree well with that from gauge-satellite merged data set, with differences less than 10 mm on most days over each region. The statistic metrics demonstrate that the IMERG Final Run has a strong potential for detecting heavy rain events but with a relatively large error. This letter may provide useful feedback and insights for further improving the precipitation retrieving algorithm and the application of such data sets.


doi: https://doi.org/10.1109/LGRS.2018.2793897


上一篇:2018 Variations of the argentine gyre observed in the GRACE time-variable gravity and ocean altimetry measurements
下一篇:2018 Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau
 
 
 

Copyright (C) 华中科技大学引力中心 地址:湖北省武汉市洪山区珞喻路1037号 邮编:430074